江南大学油脂园地
美国油脂化学家协会(AOCS)就种子油的科学事实发表公开声明
“种子油(seed oils)”是从油料植物的种子中提取的油脂,长期以来是国际市场上最主要的一类食用植物油,包括大豆油、菜籽油、葵花籽油、玉米油等,另一类重要的植物油来自果肉,如棕榈油、椰子油等。
近年来,关于“种子油”的食品安全话题常常出现在国内外多种自媒体上,它们将“种子油”描述为健康杀手,并将其与肥胖、癌症等慢性疾病联系起来,呼吁禁止“种子油”作为食用油,其主要理由是其含有高比例的ω-6脂肪酸,而ω-6脂肪酸已知会促进体内炎症反应。
种子油真的危害健康吗?2025年6月20日,权威的美国油脂化学家协会(AOCS)以60篇科学文献为依据,就种子油的科学事实发表公开声明。内容如下:
种子油是美国食品体系的重要组成部分,它是一种营养丰富、价格实惠且用途广泛的膳食脂肪来源。其独特的脂肪酸结构使其适用于从家庭烹饪到大规模食品生产等各种烹饪用途。本事实说明书以科学为基础,概述了种子油在安全健康饮食中的作用。
•种子油提供对健康和身体正常功能很重要的必需脂肪酸(1,2)。
•种子油中的多不饱和脂肪酸可以降低血液中的“坏”胆固醇(LDL)(3,4)。
•种子油中的多不饱和脂肪酸可降低人们患心血管疾病(5-11,35)和糖尿病(12-36)的可能性。
•人体临床试验并未证明种子油中的多不饱和脂肪酸会促进炎症(37,38)。
•种子油中的多不饱和脂肪酸可以改善身体成分和代谢健康(39)。
•膳食中 Omega-6 与 Omega-3 的比例一直存在争议,并且对其有效性尚无共识 (40-41)。
•所有油在变质或受到热破坏(例如加热到超过其烟点的温度)时都会变质(42-50)。
•种子油含有大量的生育酚,可以延缓酸败的发生,提供天然的防腐保护(42,45,49,50)。
•应小心加热油,以防止油脂因高温降解而变质(42,49,51)。
•变质的油可能含有有害成分,因此应将其丢弃,而不要像任何变质的食物一样食用(52-60)。
参考文献
[1]Beneficial effects of linoleic acid on cardiometabolic health: an update. Jackson KH, Harris WS, Belury MA, Kris-Etherton PM, Calder PC. Lipids Health Dis. 2024 Sep 12;23(1):296.
[2]Perspective on the health effects of unsaturated fatty acids and commonly consumed plant oils high in unsaturated fat. Petersen KS, Maki KC, Calder PC, Belury MA, Messina M, Kirkpatrick CF, Harris WS. Br J Nutr. 2024 Oct 28;132(8):1039-1050.
[3]Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Mensink RP, Zock PL, Kester AD, Katan MB. Am J Clin Nutr. 2003 May;77(5):1146-55.
[4]Impact of Replacement of Individual Dietary SFAs on Circulating Lipids and Other Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials in Humans. Sellem L, Flourakis M, Jackson KG, Joris PJ, Lumley J, Lohner S, Mensink RP, Soedamah-Muthu SS, Lovegrove JA. Adv Nutr. 2022 Aug 1;13(4):1200-1225.
[5]Effects on coronary heart disease of increasing polyunsaturated fat in place of saturated fat: a systematic review and meta-analysis of randomized controlled trials. Mozaffarian D, Micha R, Wallace S. PLoS Med. 2010 Mar 23;7(3):e1000252.
[6]Circulating and dietary omega-3 and omega-6 polyunsaturated fatty acids and incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. de Oliveira Otto MC, Wu JH, Baylin A, Vaidya D, Rich SS, Tsai MY, Jacobs DR Jr, Mozaffarian D. J Am Heart Assoc. 2013 Dec 18;2(6):e000506.
[7]Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the Cardiovascular Health Study. Wu JH, Lemaitre RN, King IB, Song X, Psaty BM, Siscovick DS, Mozaffarian D. Circulation. 2014 Oct 7;130(15):1245-53.
[8]Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies. Farvid MS, Ding M, Pan A, Sun Q, Chiuve SE, Steffen LM, Willett WC, Hu FB. Circulation. 2014 Oct 28;130(18):1568-78.
[9]Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality. Marklund M, Wu JHY, Imamura F, Del Gobbo LC, Fretts A, de Goede J, Shi P, Tintle N, Wennberg M, Aslibekyan S, Chen TA, de Oliveira Otto MC, Hirakawa Y, Eriksen HH, Kröger J, Laguzzi F, Lankinen M, Murphy RA, Prem K, Samieri C, Virtanen J, Wood AC, Wong K, Yang WS, Zhou X, Baylin A, Boer JMA, Brouwer IA, Campos H, Chaves PHM, Chien KL, de Faire U, Djoussé L, Eiriksdottir G, El-Abbadi N, Forouhi NG, Michael Gaziano J, Geleijnse JM, Gigante B, Giles G, Guallar E, Gudnason V, Harris T, Harris WS, Helmer C, Hellenius ML, Hodge A, Hu FB, Jacques PF, Jansson JH, Kalsbeek A, Khaw KT, Koh WP, Laakso M, Leander K, Lin HJ, Lind L, Luben R, Luo J, McKnight B, Mursu J, Ninomiya T, Overvad K, Psaty BM, Rimm E, Schulze MB, Siscovick D, Skjelbo Nielsen M, Smith AV, Steffen BT, Steffen L, Sun Q, Sundström J, Tsai MY, Tunstall-Pedoe H, Uusitupa MIJ, van Dam RM, Veenstra J, Monique Verschuren WM, Wareham N, Willett W, Woodward M, Yuan JM, Micha R, Lemaitre RN, Mozaffarian D, Risérus U; Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Fatty Acids and Outcomes Research Consortium (FORCE). Circulation. 2019 May 21;139(21):2422-2436.
[10]Reduction in saturated fat intake for cardiovascular disease. Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Cochrane Database Syst Rev. 2020 Aug 21;8(8):CD011737.
[11]Dietary intake and biomarkers of linoleic acid and mortality: systematic review and meta-analysis of prospective cohort studies. Li J, Guasch-Ferré M, Li Y, Hu FB. Am J Clin Nutr. 2020;112(1):150–167.
[12]Dietary fat intake and risk of type 2 diabetes in women. Salmerón J, Hu FB, Manson JE, Stampfer MJ, Colditz GA, Rimm EB, Willett WC. Am J Clin Nutr. 2001;73:1019-26.
[13]Dietary fat and incidence of type 2 diabetes in older Iowa women. Meyer KA, Kushi LH, Jacobs DR Jr, Folsom AR. Diabetes Care. 2001;24:1528-35.
[14]Dietary fat and meat intake in relation to risk of type 2 diabetes in men. van Dam RM, Willett WC, Rimm EB, Stampfer MJ, Hu FB. Diabetes Care. 2002;25:417-24.
[15]Associations Between Linoleic Acid Intake and Incident Type 2 Diabetes Among U.S. Men and Women. Zong G, Liu G, Willett WC, Wanders AJ, Alssema M, Zock PL, Hu FB, Sun Q. Diabetes Care. 2019;42:1406-1413.
[16]Dietary fat and the risk of clinical type 2 diabetes: the European prospective investigation of Cancer-Norfolk study. Harding AH, Day NE, Khaw KT, Bingham S, Luben R, Welsh A, Wareham NJ. Am J Epidemiol. 2004;159:73-8.
[17]Fatty acids measured in plasma and erythrocyte-membrane phospholipids and derived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: a pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. Patel PS, Sharp SJ, Jansen E, Luben RN, Khaw KT, Wareham NJ, Forouhi NG. Am J Clin Nutr. 2010;92:1214-22.
[18]Insulin resistance, inflammation, and serum fatty acid composition. Fernández-Real JM, Broch M, Vendrell J, Ricart W. Diabetes Care. 2003;26:1362-8.
[19]Low Percentage of Vegetable Fat in Red Blood Cells Is Associated with Worse Glucose Metabolism and Incidence of Type 2 Diabetes. Chiva-Blanch G, Giró O, Cofán M, Calle-Pascual AL, Delgado E, Gomis R, Jiménez A, Franch-Nadal J, Rojo Martínez G, Ortega E. Nutrients. 2022;14:1368.
[20]Red Blood Cell Fatty Acids and Incident Diabetes Mellitus in the Women’s Health Initiative Memory Study. Harris WS, Luo J, Pottala JV, Margolis KL, Espeland MA, Robinson JG. PLoS One. 2016;11:e0147894.
[21]The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Vessby B, Aro A, Skarfors E, Berglund L, Salminen I, Lithell H. Diabetes. 1994;43:1353-7.
[22]Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men. Laaksonen DE, Lakka TA, Lakka HM, Nyyssönen K, Rissanen T, Niskanen LK, Salonen JT. Diabet Med. 2002;19:456-64.
[23]Associations of Serum Fatty Acid Proportions with Obesity, Insulin Resistance, Blood Pressure, and Fatty Liver: The Cardiovascular Risk in Young Finns Study. Kaikkonen JE, Jula A, Viikari JSA, Juonala M, Hutri-Kähönen N, Kähönen M, Lehtimäki T, Raitakari OT. J Nutr. 2021;151:970-978.
[24]Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH; ARIC Study Investigators. Am J Clin Nutr. 2003;78:91-8.
[25]Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men. Mahendran Y, Cederberg H, Vangipurapu J, Kangas AJ, Soininen P, Kuusisto J, Uusitupa M, Ala-Korpela M, Laakso M. Diabetes Care. 2013;36:3732-8.
[26]Association of erythrocyte membrane fatty acids with changes in glycemia and risk of type 2 diabetes. Mahendran Y, Ågren J, Uusitupa M, Cederberg H, Vangipurapu J, Stančáková A, Schwab U, Kuusisto J, Laakso M. Am J Clin Nutr. 2014;99:79-85.
[27]Plasma fatty acids as predictors of glycaemia and type 2 diabetes. Lankinen MA, Stančáková A, Uusitupa M, Ågren J, Pihlajamäki J, Kuusisto J, Schwab U, Laakso M. Diabetologia. 2015;58:2533-44.
[28]Serum n-6 polyunsaturated fatty acids, delta5- and delta6-desaturase activities, and risk of incident type 2 diabetes in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Yary T, Voutilainen S, Tuomainen TP, Ruusunen A, Nurmi T, Virtanen JK. Am J Clin Nutr. 2016;103:1337-43.
[29]Fatty acid profile of the erythrocyte membrane preceding development of Type 2 diabetes mellitus. Krachler B, Norberg M, Eriksson JW, Hallmans G, Johansson I, Vessby B, Weinehall L, Lindahl B. Nutr Metab Cardiovasc Dis. 2008;18:503-10.
[30]Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Kröger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Döring F, Joost HG, Boeing H, Schulze MB. Am J Clin Nutr. 2011;93:127-42.
[31]Plasma Lipidomic n-6 Polyunsaturated Fatty Acids and Type 2 Diabetes Risk in the EPIC-Potsdam Prospective Cohort Study. Prada M, Eichelmann F, Wittenbecher C, Kuxhaus O, Schulze MB. Diabetes Care. 2023;46:836-844.
[32]Association of Plasma Phospholipid n-3 and n-6 Polyunsaturated Fatty Acids with Type 2 Diabetes: The EPIC-InterAct Case-Cohort Study. Forouhi NG, Imamura F, Sharp SJ, Koulman A, Schulze MB, Zheng J, Ye Z, Sluijs I, Guevara M, Huerta JM, Kröger J, Wang LY, Summerhill K, Griffin JL, Feskens EJ, Affret A, Amiano P, Boeing H, Dow C, Fagherazzi G, Franks PW, Gonzalez C, Kaaks R, Key TJ, Khaw KT, Kühn T, Mortensen LM, Nilsson PM, Overvad K, Pala V, Palli D, Panico S, Quirós JR, Rodriguez-Barranco M, Rolandsson O, Sacerdote C, Scalbert A, Slimani N, Spijkerman AM, Tjonneland A, Tormo MJ, Tumino R, van der A DL, van der Schouw YT, Langenberg C, Riboli E, Wareham NJ. PLoS Med. 2016 Jul 19;13(7):e1002094.
[33]Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Wu JHY, Marklund M, Imamura F, Tintle N, Ardisson Korat AV, de Goede J, et al. Lancet Diabetes Endocrinol. 2017 Dec;5(12):965-974.
[34]Dietary Intake of Linoleic Acid, Its Concentrations, and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of Prospective Cohort Studies. Mousavi SM, Jalilpiran Y, Karimi E, Aune D, Larijani B, Mozaffarian D, Willett WC, Esmaillzadeh A. Diabetes Care. 2021 Sep;44(9):2173-218.
[35]Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, Becker W. Food Nutr Res. 2014 Jul 10;58.
[36]Dietary Intake of Linoleic Acid, Its Concentrations, and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-analysis of Prospective Cohort Studies. Mousavi SM, Jalilpiran Y, Karimi E, Aune D, Larijani B, Mozaffarian D, Willett WC, Esmaillzadeh A. Diabetes Care. 2021;44:2173-218.
[37]Effect of dietary linoleic acid on markers of inflammation in healthy persons: A systematic review of randomized controlled trials. Johnson GH, Fritsche K. J Acad Nutr Diet. 2012;112(7):1029–1041.
[38]Omega-6 fatty acids and inflammation. Innes JK, Calder PC. Prostaglandins Leukot Essent Fatty Acids. 2018;132:41-48.
[39]Polyunsaturated fatty acids as modulators of fat mass and lean mass in human body composition regulation and cardiometabolic health. Monnard CR, Dulloo AG. Obes Rev. 2021;22(S2):e13197.
[40]The omega-6/omega-3 fatty acid ratio and cardiovascular disease risk: uses and abuses. Harris WS. Curr Atheroscler Rep. 2006;8(6):453–459.
[41]UK Food Standards Agency Workshop Report: the effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. Stanley JC, Elsom RL, Calder PC, Griffin BA, Harris WS, Jebb SA, Lovegrove JA, Moore CS, Riemersma RA, Sanders TA. Br J Nutr. 2007 Dec;98(6):1305-10.
[42]Lipid Oxidation. Frankel EN. Oily Press, Dundee Scotland. 2005.
[43]Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. McClements DJ, Decker EA. J Food Sci. 2000;65(8):1270-1282.
[44]Lipid Oxidation: New Perspectives on an Old Reaction. Schaich KM. In: Bailey AE, Shahidi F, eds. Bailey’s Industrial Oil & Fat Products. Hoboken, NJ: Wiley; 2005.
[45]Why does lipid oxidation in foods continue to be such a challenge? Decker EA, Bayram I. INFORM. 2021 May.
[46]Lipids. McClements DJ, Decker EA. In: Damodaran S, Parkin K, Fennema O, eds. Fennema’s Food Chemistry. 5th ed. Boca Raton, FL: CRC Press; 2017.
[47]Metals and lipid oxidation. Contemporary issues. Schaich KM. Lipids. 1992;27:209–218.
[48]Minor Components in Food Oils: A Critical Review of their Roles on Lipid Oxidation Chemistry in Bulk Oils and Emulsions. Chen B, McClements DJ, Decker EA. Crit Rev Food Sci Nutr. 2011;51:901-916.
[49]Bailey’s Industrial Oil and Fat Products. Bailey AE. Volume 7. New York: Wiley; 2020.
[50]Lipid Oxidation, Challenges in Food Systems. Logan A, Nienaber U, Pan X, eds. AOCS Press; 2013.
[51]Quality and safety of frying oils used in restaurants. Sebastian A, Ghazani M, Marangoni AG. Food Res Int. 2014;64:420-423.
[52]Underlying mechanisms of synergistic antioxidant interactions during lipid oxidation. Bayram I, Decker EA. Trends Food Sci Technol. 2023;133:219-230.
[53]Lipid oxidation in foods and its implications on proteins. Lianxin G, Kunlun L, Huiyan Z. Front Nutr. 2023.
[54]Biological Implications of Lipid Oxidation Products. Vieira S, et al. J Am Oil Chem Soc. 2017;94(3):339-351.
[55]Are lipid oxidation products consumed in foods toxic? If so, where? Schaich KM. J Am Oil Chem Soc. 2020;97:76-76.
[56]The lipid peroxidation product EKODE exacerbates colonic inflammation and colon tumorigenesis. Lei L, Yang J. Zhang J, Zhang G. Redox Biol. 2021;42:101880.
[57]Intraperitoneal injection of 4-hydroxynonenal (4-HNE), a lipid peroxidation product, exacerbates colonic inflammation through activation of Toll-like receptor 4 signaling. Wang YX, Wang W, Yang H, Shao D, Zhao X, Zhang G. Free Radic Biol Med. 2019;131:237-242.
[58]Lipidomic Analysis of Oxidized Fatty Acids in Plant and Algae Oils. Richardson CE, Hennebelle M, Otoki Y, Zamora D, Yang J, Hammock BD, Taha AY. J Agric Food Chem. 2017;65(9):1941-1951.
[59]Techniques for the Analysis of Minor Lipid Oxidation Products Derived from Triacylglycerols: Epoxides, Alcohols, and Ketones. Xia W, Budge SM. Compr Rev Food Sci Food Saf. 2017;16(4):735-756.
[60]Quantitation of Hydroperoxy-, Keto- and Hydroxy-Dienes During Oxidation of FAMEs from High-Linoleic and High-Oleic Sunflower Oils. Morales Barroso A, Dobarganes MC, Márquez-Ruiz G, Velasco J. J Am Oil Chem Soc. 2010;87(11):1271-1279.
永红国际展览(搜索"永红国际展览"公众号关注)注:转载请联系授权并保留出处和作者,不得删减内容。